Rationale and objectives: Hyperpolarized xenon (129Xe) MRI is a noninvasive method to assess pulmonary structure and function. To measure lung microstructure, diffusion-weighted imaging-commonly the apparent diffusion coefficient (ADC)-can be employed to map changes in alveolar-airspace size resulting from normal aging and pulmonary disease. However, low signal-to-noise ratio (SNR) decreases ADC measurement certainty, and biases ADC to spuriously low values. Further, these challenges are most severe in regions of the lung where alveolar simplification or emphysematous remodeling generate abnormally high ADCs. Here, we apply Global Local Higher Order Singular Value Decomposition (GLHOSVD) denoising to enhance image SNR, thereby reducing uncertainty and bias in diffusion measurements.
Materials and methods: GLHOSVD denoising was employed in simulated images and gas phantoms with known diffusion coefficients to validate its effectiveness and optimize parameters for analysis of diffusion-weighted 129Xe MRI. GLHOSVD was applied to data from 120 subjects (34 control, 39 cystic fibrosis (CF), 27 lymphangioleiomyomatosis (LAM), and 20 asthma). Image SNR, ADC, and distributed diffusivity coefficient (DDC) were compared before and after denoising using Wilcoxon signed-rank analysis for all images.
Results: Denoising significantly increased SNR in simulated, phantom, and in-vivo images, showing a greater than 2-fold increase (p < 0.001) across diffusion-weighted images. Although mean ADC and DDC remained unchanged (p > 0.05), ADC and DDC standard deviation decreased significantly in denoised images (p < 0.001).
Conclusion: When applied to diffusion-weighted 129Xe images, GLHOSVD improved image quality and allowed airspace size to be quantified in high-diffusion regions of the lungs that were previously inaccessible to measurement due to prohibitively low SNR, thus providing insights into disease pathology.
Keywords: Denoising; Diffusion-weighted MRI; Hyperpolarized Xenon; Pulmonary.
Copyright © 2024 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.