Objective: Winter-over expeditioners in Antarctica are challenged by various environmental and psycho-social stress factors, which may induce psychophysiological changes. The autonomic nervous system (ANS) plays a crucial role in the adaptation process under stress. However, the relationship between ANS activity and the mood states of expeditioners remains largely unexplored. This study aims to uncover the pattern of ANS adjustment under extreme Antarctic environments and provide new insights into the correlations between ANS activity and mood state changes, which may provide scientific data for medical interventions.
Methods: Fourteen expeditioners at Zhongshan Station participated in this study. The study was conducted during four representative periods: pre-Antarctica, Antarctica-1 (pre-winter), Antarctica-2 (winter), and Antarctica-3 (summer). The heart rate variability (HRV) of the expeditioners was continuously measured for 24 hours to evaluate ANS activity. Plasma levels of catecholamines were tested by ELISA. Mood states were assessed by the Profile of Mood States (POMS) scale.
Results: HRV analysis showed a disturbance of ANS during winter and summer periods. For frequency domain parameters, very low frequency (VLF), low frequency (LF), high frequency (HF), and total power (TP) significantly increased during the second half of the mission. Especially, LF/HF ratio decreased during summer, indicating the predominance of vagal tone. Results of the time domain analysis showed increased heart rate variability during the austral winter and summer. Plasma epinephrine (E) significantly increased during residence in Antarctica. Compared with pre-Antarctica, the vigor, depression, and anger scores of the expeditioners decreased significantly during the austral summer. Notably, the depression score showed a moderate positive correlation with LF/HF, while weak negative correlations with other HRV indicators, including TP, VLF, and LF. Anger score showed a moderate positive correlation with LF/HF and weak negative correlations with the average normal-to-normal (NN) interval, and the root mean square of differences between adjacent RR intervals (RMSSD). Plasma E level weakly correlated with the average NN interval.
Conclusion: Prolonged residence in Antarctica increased the ANS activities and shifted the cardiac autonomic modulation towards vagal predominance. The alteration of HRV correlated with mood states and plasma epinephrine levels.
Copyright: © 2024 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.