Dimers and 2D Networks of Adamantane-Related Ternary Organosilicon Coinage Metal Sulfide Clusters

Chemistry. 2024 Sep 16;30(52):e202401656. doi: 10.1002/chem.202401656. Epub 2024 Aug 22.

Abstract

Adamantane-type organotin sulfide clusters were recently shown to react with coinage metal phosphine complexes under replacement of an organic substituent by a metal-phosphine unit. An extension of such studies involving the silicon-based congener [(PhSi)4S6] (A) revealed that the cluster core will be partly disassembled and a {PhSi} moiety is replaced by a coinage metal phosphine complex to form [(Et3PAg)3(PhSi)3S6] (B) and [Na2(thf)2.33][(Me3PCu)(PhSi)3S6] (C). Herein, we present an extension of this work upon variation of the reactants and reaction conditions. Besides the isolation of crystalline precursor complexes [CuCl(PMe2Ph)3] (1) and [AgCl(PMe2Ph)2]2 (2), the study addresses reactions of A with AgCl and a phosphine ligand in CH2Cl2, upon which A is completely disassembled to form [(Ph3P)3Ag(μ-S)SiCl2Ph] (3). In another case a CH2 group, most likely stemming from CH2Cl2, was attached to the ligand, thus generating [{PhCl(S)SiSCH2P(Ph2)CH2CH2}2] (4). Upon using CuCl and 1,4-bis(diphenylphosphino)butane (dppb) we isolated the phosphine-bridged analog of B, [{(dppbCu2)CuP(Ph2)(CH2CH2)(PhSi)3S6}2] (5). In order to receive the yet elusive silver homolog of C, we used PMe2Ph as a bulkier ligand. This way we generated a 2D coordination polymer of the desired composition, [Na2(thf)1.5][(Me2PhPAg)(PhSi)3S6] (6). UV-visible spectra of 6 indicated a bandgap of 3.89 eV, thus blue-shifted in regards to B and C.

Keywords: Coinage metals; Coordination assemblies; Optical spectra; Organosilicon chalcogenide clusters; Ternary clusters.