Effect of compound treatments on mouse lens viscoelasticity

Exp Eye Res. 2024 Sep:246:109992. doi: 10.1016/j.exer.2024.109992. Epub 2024 Jul 6.

Abstract

Previous studies have shown that pharmaceutical agents such as lipoic acid have the ability to soften the lens, presenting a promising avenue for treating presbyopia. One obstacle encountered in the preclinical stage of such agents is the need for precise measurements of lens elasticity in experimental models. This study aimed to evaluate the effects of 25-hydroxycholesterol, lipoic acid, and obeticholic acid on the viscoelastic properties of mouse lenses using a custom-built elastometer system. Data were acquired on lenses from C57BL/6J female mice from two age groups: young (age: 8-10 weeks) and old (age: 32-43 weeks). OD lenses were used as the control and OS lenses were treated. Control lenses were immersed in Dulbecco's Modified Eagle Medium (DMEM) and treatment lenses were immersed in a compound solution containing 25-hydroxycholesterol (5 young and 5 old), lipoic acid at 2.35 mM (5 young and 5 old), lipoic acid at 0.66 mM (5 old), or obeticholic acid (5 old) at 37 °C for 18 h. After treatment, the mouse lenses were placed in a DMEM-filled chamber within a custom-built elastometer system that recorded the load and lens shape as the lens was compressed by 600 μm at a speed of 50 μm/s. The load was continuously recorded during compression and during stress-relaxation. The compression phase was fit with a linear function to quantify lens stiffness. The stress-relaxation phase was fit with a 3-term exponential relaxation model providing relaxation time constants (t1, t2, t3), and equilibrium load. The lens stiffness, time constants and equilibrium load were compared for the control and treated groups. Results revealed an increase in stiffness with age for the control group (young: 1.16 ± 0.11 g/mm, old: 1.29 ± 0.14 g/mm) and relaxation time constants decreased with age (young: t1 = 221.9 ± 29.0 s, t2 = 24.7 ± 3.8 s, t3 = 3.12 ± 0.87 s, old: t1 = 183.0 ± 22.0 s, t2 = 20.6 ± 2.6 s and t3 = 2.24 ± 0.43 s). Among the compounds tested, only 25-hydroxycholesterol produced statistically significant changes in the lens stiffness, relaxation time constants, and equilibrium load. In conclusion, older mouse lenses are stiffer and less viscous than young mouse lenses. Notably, no significant change in lens stiffness was observed following treatment with lipoic acid, contrary to previous findings.

Keywords: Biomechanics; Compression; Crystalline lens; Elasticity; Presbyopia.

MeSH terms

  • Aging / physiology
  • Animals
  • Antioxidants / pharmacology
  • Chenodeoxycholic Acid* / analogs & derivatives
  • Chenodeoxycholic Acid* / pharmacology
  • Elasticity*
  • Female
  • Hydroxycholesterols / pharmacology
  • Lens, Crystalline* / drug effects
  • Mice
  • Mice, Inbred C57BL*
  • Thioctic Acid* / analogs & derivatives
  • Thioctic Acid* / pharmacology
  • Viscosity

Substances

  • Thioctic Acid
  • Chenodeoxycholic Acid
  • obeticholic acid
  • Antioxidants
  • Hydroxycholesterols