Inactivating mutations of Foxp3, the master regulator of regulatory T cell development and function, lead to immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome in mice and humans. IPEX is a fatal autoimmune disease, with allogeneic stem cell transplant being the only available therapy. In this study, we report that a single dose of adeno-associated virus (AAV)-IL-27 to young mice with naturally occurring Foxp3 mutation (Scurfy mice) substantially ameliorates clinical symptoms, including growth retardation and early fatality. Correspondingly, AAV-IL-27 gene therapy significantly prevented naive T cell activation, as manifested by downregulation of CD62L and upregulation of CD44, and immunopathology typical of IPEX. Because IL-27 is known to induce IL-10, a key effector molecule of regulatory T cells, we evaluated the contribution of IL-10 induction by crossing IL-10-null allele to Scurfy mice. Although IL-10 deficiency does not affect the survival of Scurfy mice, it largely abrogated the therapeutic effect of AAV-IL-27. Our study revealed a major role for IL-10 in AAV-IL-27 gene therapy and demonstrated that IPEX is amenable to gene therapy.
Copyright © 2024 by The American Association of Immunologists, Inc.