In context with the scientific evidence of aerosol deposition induced snow and glacier melt, this paper provides baseline information about the spatiotemporal variability of aerosols and snow-ice chemistry filling the data and knowledge gap over the western Himalaya, India based on recently published paper [1]. A systematic approach was employed that entailed analysis of aerosol variability over four decades using MERRA-2 (Modern-Era Retrospective analysis for Research and Applications) data over five major mountain ranges in the western Himalaya. Further, data about nine physicochemical parameters was generated over three selected glaciers in the study area. HYSPLIT (HYbrid Single Particle Lagrangian Integrated Trajectory) model simulated air mass sources at weekly intervals. This dataset is valuable for future investigations aimed at understanding and characterizing the impacts of light-absorbing impurities on radiative forcing, albedo changes, snow-melt, glacier recession and water quality in the western Himalaya.
Keywords: Air-mass trajectories; Himalaya; MERRA-2; Snow-ice chemistry.
© 2024 The Authors. Published by Elsevier Inc.