An elongated object can be rotated around one of its short axes, like a propeller, or around its long axis, like a spinning top. Using optically levitated nanoparticles, short-axis rotation and libration have been systematically investigated in several recent studies. Notably, short-axis rotational degrees of freedom have been cooled to millikelvin temperatures and driven into gigahertz rotational speeds. However, controlled long-axis spinning has so far remained an unrealized goal. Here, we demonstrate controlled long-axis spinning of an optically levitated nanodumbbell with spinning rates exceeding 1 GHz. We show that the damping rate in high vacuum can be as low as a few millihertz. Our results open up applications in inertial torque sensing and studies of rotational quantum interference.