Enhancing the performance of electrorheological fluids by structure design

J Colloid Interface Sci. 2024 Dec:675:1052-1058. doi: 10.1016/j.jcis.2024.07.061. Epub 2024 Jul 11.

Abstract

By incorporating polar fibers into the design of electrorheological (ER) fluids, a 130% performance improvement can be achieved with the addition of only 0.8 vol% of polar long fibers. We quantitatively analyzed the impact of relatively long fibers on improving ER performance by measuring the yield stress, shear stress, and current density after adding fibers. Both optical microscopy and transmission electron microscopy were used to observe and analyze the interaction between ER particles and polar fibers. The results indicate that, under the influence of an electric field, the fibers transform the one-dimensional chain-like structure into a two-dimensional mesh structure, greatly improving the ER performance. The transformation of structure induced by the polar fibers in the ER fluids amplifies the ER effect. However, the inclusion of non-polar fibers does not contribute to this enhancement, as a point of comparison. Moreover, to ensure the universality of this method, we used two different types of ER fluids in experiments. The utilization of this method offers a straightforward, environmentally friendly, and highly effective approach. Furthermore, this study provides a novel technical solution aimed at enhancing the performance of ER fluids.

Keywords: Cellulose; Electrorheological fluids; Performance improvement; Polar fiber.