VT204: A Potential Small Molecule Inhibitor Targeting KRASG12C Mutation for Therapeutic Intervention in Non-Small Cell Lung Cancer

Technol Cancer Res Treat. 2024 Jan-Dec:23:15330338241264853. doi: 10.1177/15330338241264853.

Abstract

Objectives: The development of effective treatments for non-small cell lung cancer (NSCLC), particularly targeting the KRASG12C mutation, remains a challenge. In this study, we investigated the therapeutic potential of VT204, a small molecule inhibitor of KRASG12C, in NSCLC. Methods: To achieve the objectives, we conducted a comprehensive set of experimental methods. In vitro experiments involved the investigation of VT204 on proliferation, apoptosis, cell cycle dynamics, migration, invasion, and on the RAF/MEK/ERK signaling pathway in NCI-H358 cells. In addition, in vivo experiments were performed to evaluate the influence of VT204 on tumor growth. Results: We demonstrated that VT204 effectively suppressed cell proliferation in NCI-H358 cells, with significant inhibition observed at a concentration of 8 μM. Colony formation assays further supported the inhibitory effect of VT204 on NCI-H358 cell growth. Moreover, VT204 exhibited notable effects on suppressing migration and invasion capacities of NCI-H358 cells, indicating its potential as a metastasis-inhibiting agent. Mechanistic investigations revealed that VT204 induced apoptosis and G2M-phase cell cycle arrest in NCI-H358 cells. Additionally, VT204 modulated the RAF/MEK/ERK signaling pathway, leading to reduced phosphorylation of ERK. In vivo studies using xenograft models confirmed the inhibitory effect of VT204 on NCI-H358 tumor growth. Conclusion: These findings highlight VT204 as a promising therapeutic candidate for NSCLC targeting the KRASG12C mutation.

Keywords: KRASG12C; VT204; non-small cell lung cancer; small molecule inhibitor; therapeutic intervention.

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology
  • Antineoplastic Agents / therapeutic use
  • Apoptosis* / drug effects
  • Carcinoma, Non-Small-Cell Lung* / drug therapy
  • Carcinoma, Non-Small-Cell Lung* / genetics
  • Carcinoma, Non-Small-Cell Lung* / pathology
  • Cell Line, Tumor
  • Cell Movement* / drug effects
  • Cell Proliferation* / drug effects
  • Disease Models, Animal
  • Humans
  • Lung Neoplasms* / drug therapy
  • Lung Neoplasms* / genetics
  • Lung Neoplasms* / metabolism
  • Lung Neoplasms* / pathology
  • MAP Kinase Signaling System / drug effects
  • Mice
  • Mutation*
  • Proto-Oncogene Proteins p21(ras)* / genetics
  • Xenograft Model Antitumor Assays*

Substances

  • Proto-Oncogene Proteins p21(ras)
  • KRAS protein, human
  • Antineoplastic Agents