Can we identify tipping points of resilience loss in Mediterranean rangelands under increased summer drought?

Ecology. 2024 Sep;105(9):e4383. doi: 10.1002/ecy.4383. Epub 2024 Jul 26.

Abstract

Mediterranean ecosystems are predicted to undergo longer and more intense summer droughts. The mechanisms underlying the response of herbaceous communities to such drier environments should be investigated to identify the resilience thresholds of Mediterranean rangelands. A 5-year experiment was conducted in deep and shallow soil rangelands of southern France. A rainout shelter for 75 days in summer imposed drier and warmer conditions. Total soil water content was measured monthly to model available daily soil water. Aboveground net primary production (ANPP), forage quality, and the proportion of graminoids in ANPP were measured in spring and autumn. Plant senescence and plant cover were assessed in summer and spring, respectively. The experimental years were among the driest ever recorded at the site. Therefore, manipulated summer droughts were drier than long-term ambient conditions. Interactions between treatment, community type, and experimental year were found for most variables. In shallow soil communities, spring plant cover decreased markedly with time. This legacy effect, driven by summer plant mortality and the loss of perennial graminoids, led to an abrupt loss of resilience when the extreme water stress index exceeded 37 mm 10 day-1, characterized by a reduction of spring plant cover below 50% and a decreased ANPP in rainy years. Conversely, the ANPP of deep soil communities remained unaffected by increased summer drought, although the presence of graminoids increased and forage nutritive value decreased. This study highlights the role of the soil water reserve of Mediterranean plant communities in modulating ecosystem responses to chronically intensified summer drought. Communities on deep soils were resilient, but communities on shallow soils showed a progressive, rapid, and intense degradation associated with a loss of resilience capacity. Notably, indexes of extreme stress were a better indicator of tipping points than indexes of integrated annual stress. Considering the role of soil water availability in other herbaceous ecosystems should improve the ability to predict the resilience of plant communities under climate change.

Keywords: aridity; biomass production; foliage senescence; plant functional types; recovery; soil water availability; water balance model; water stress.

MeSH terms

  • Climate Change
  • Droughts*
  • Ecosystem*
  • France
  • Mediterranean Region
  • Plants / classification
  • Seasons*
  • Soil / chemistry
  • Time Factors
  • Water

Substances

  • Soil
  • Water