The differentiation between primary and secondary forms of membranous nephropathy (MN) is a cornerstone that is necessary for adequate decision making regarding the treatment options and behavior of each specific case. Kidney biopsy and antibody results can be controversial, and a unique biomarker has still not been found.
Background and objectives: We investigated the lack of mannose-binding lectin (MBL) deposition in patients with secondary MNs (sMNs) with the presence of IgG4 deposition in relation to the presence of MBL deposition in patients with primary MNs (pMNs). We also established a connection between the stage of MN and MBL deposition.
Materials and methods: Materials from 72 renal biopsies with proven MN were used for immunohistochemistry staining (IHC) for the phospholipase A2 receptor (PLA2R), immunoglobulin subtype IgG4, and MBL. Patients were separated into one of the following three groups: primary MN (pMN), idiopathic MN (iMN), and secondary MN (sMN). Serum antibodies for PLA2R and thrombospondin type-I-domain-containing 7A (THSD7A) were also used for the precise evaluation of the type of MN, as well as for detecting positivity for PLA2R using IHC. Which stage of MN was present in relation to the deposition of MBL was evaluated.
Results: In total, 50 patients were positive for IgG4, 34 with pMN, 12 with iMN, and 4 with sMN. A total of 20 patients were positive for MBL, 14 with pMN and 6 with iMN; no MBL deposits were found in patients with sMN. MBL positivity was predominantly present in the first two stages of MN, with a gradual reduction in the later stages.
Conclusions: The activation of the lectin-complement pathway occurs in the early stages of the disease and is associated with the deposition of IgG4; IgG4 deposition is present in sMN, but there is no MBL deposition. IgG4 cannot be used for the differentiation of primary from secondary MNs, but the lack of MBL can be used as a marker for sMN in the early stages of the disease.
Keywords: APLA2R; IgG4; deposition; differential diagnosis; lectin–complement pathway.