Methods for assessing inverse publication bias of adverse events

Contemp Clin Trials. 2024 Oct:145:107646. doi: 10.1016/j.cct.2024.107646. Epub 2024 Jul 30.

Abstract

In medical research, publication bias (PB) poses great challenges to the conclusions from systematic reviews and meta-analyses. The majority of efforts in methodological research related to classic PB have focused on examining the potential suppression of studies reporting effects close to the null or statistically non-significant results. Such suppression is common, particularly when the study outcome concerns the effectiveness of a new intervention. On the other hand, attention has recently been drawn to the so-called inverse publication bias (IPB) within the evidence synthesis community. It can occur when assessing adverse events because researchers may favor evidence showing a similar safety profile regarding an adverse event between a new intervention and a control group. In comparison to the classic PB, IPB is much less recognized in the current literature; methods designed for classic PB may be inaccurately applied to address IPB, potentially leading to entirely incorrect conclusions. This article aims to provide a collection of accessible methods to assess IPB for adverse events. Specifically, we discuss the relevance and differences between classic PB and IPB. We also demonstrate visual assessment through contour-enhanced funnel plots tailored to adverse events and popular quantitative methods, including Egger's regression test, Peters' regression test, and the trim-and-fill method for such cases. Three real-world examples are presented to illustrate the bias in various scenarios, and the implementations are illustrated with statistical code. We hope this article offers valuable insights for evaluating IPB in future systematic reviews of adverse events.

Keywords: Adverse event; Funnel plot; Inverse publication bias; Publication bias; Regression test.

MeSH terms

  • Humans
  • Meta-Analysis as Topic
  • Publication Bias*
  • Research Design
  • Systematic Reviews as Topic