This paper proposes a novel controller design using adaptation based modified super twisting control to facilitate trajectory tracking and hovering maneuvers for the quadrotor. The controller gains of the existing modified super twisting control require bounds on the disturbance for trajectory tracking and hovering of the quadrotor. In this paper, the controller gains are adapted using the proposed dynamic adaptation law without knowing the actual disturbance or their upper bounds. The controller is designed within a nonlinear framework without performing linearization of quadrotor dynamics, which enables the proposed controller to remain effective even when the states deviate significantly from their nominal values. The performance of trajectory tracking and hovering of the quadrotor in the presence of disturbance is demonstrated using numerical simulations. In order to assess the effectiveness of the controller, the performance of the adaptation based modified super twisting control is compared to the existing modified super twisting control, and the proposed controller outperforms the existing one.
Keywords: Adaptation law; Modified super twisting control; Quadrotor; Super twisting control; Unmanned aerial vehicle.
Copyright © 2024 International Society of Automation. Published by Elsevier Ltd. All rights reserved.