Copeptin is a 39-amino-acid long glycosylated peptide with a leucine-rich core segment in the C-terminal part of pre-pro-vasopressin. It exhibits a rapid response comparable to arginine vasopressin (AVP) in response to osmotic, hemodynamic, and nonspecific stress-related stimuli. This similarity can be attributed to equimolar production of copeptin alongside AVP. However, there are markedly different decay kinetics for both peptides, with an estimated initial half-life of copeptin being approximately two times longer than that of AVP. Like AVP, copeptin correlates strongly over a wide osmolality range in healthy individuals, making it a useful alternative to AVP measurement. While copeptin does not appear to be significantly affected by food intake, small amounts of oral fluid intake may result in a significant decrease in copeptin levels. Compared to AVP, copeptin is considerably more stable in vitro. An automated immunofluorescent assay is now available and has been used in recent landmark trials. However, separate validation studies are required before copeptin thresholds from these studies are applied to other assays. The biological variation of copeptin in presumably healthy subjects has been recently reported, which could assist in defining analytical performance specifications for this measurand. An established diagnostic utility of copeptin is in the investigation of polyuria-polydipsia syndrome and copeptin-based testing protocols have been explored in recent years. A single baseline plasma copeptin >21.4 pmol/L differentiates AVP resistance (formerly known as nephrogenic diabetes insipidus) from other causes with 100% sensitivity and specificity, rendering water deprivation testing unnecessary in such cases. In a recent study among adult patients with polyuria-polydipsia syndrome, AVP deficiency (formerly known as central diabetes insipidus) was more accurately diagnosed with hypertonic saline-stimulated copeptin than with arginine-stimulated copeptin. Glucagon-stimulated copeptin has been proposed as a potentially safe and precise test in the investigation of polyuria-polydipsia syndrome. Furthermore, copeptin could reliably identify those with AVP deficiency among patients with severe hypernatremia, though its diagnostic utility is reportedly limited in the differential diagnosis of profound hyponatremia. Copeptin measurement may be a useful tool for early goal-directed management of post-operative AVP deficiency. Additionally, the potential prognostic utility of copeptin has been explored in other diseases. There is an interest in examining the role of the AVP system (with copeptin as a marker) in the pathogenesis of insulin resistance and diabetes mellitus. Copeptin has been found to be independently associated with an increased risk of incident stroke and cardiovascular disease mortality in men with diabetes mellitus. Increased levels of copeptin have been reported to be independently predictive of a decline in estimated glomerular filtration rate and a greater risk of new-onset chronic kidney disease. Furthermore, copeptin is associated with disease severity in patients with autosomal dominant polycystic kidney disease. Copeptin predicts the development of coronary artery disease and cardiovascular mortality in the older population. Moreover, the predictive value of copeptin was found to be comparable with that of N-terminal pro-brain natriuretic peptide for all-cause mortality in patients with heart failure. Whether the measurement of copeptin in these conditions alters clinical management remains to be demonstrated in future studies.
Keywords: Arginine vasopressin; copeptin; osmolality; stress.