Background: Clinical trials support the efficacy of immune checkpoint blockades (ICBs) plus chemotherapy in a subset of patients with metastatic gastric cancer (mGC). To identify the determinants of response, we developed a TMEscore model to assess tumor microenvironment (TME), which was previously proven to be a biomarker for ICBs.
Methods: A reference database of TMEscore assays was established using PCR assay kits containing 30 TME genes. This multi-center prospective clinical trial (NCT#04850716) included patients with mGC who were administered ICB combined with chemotherapy as a first-line regimen. Eighty-six tumor samples extracted from five medical centers before treatment were used to estimate the TMEscore, PD-L1 (CPS), and mismatch repair deficiency.
Findings: The objective response rate (ORR) and median PFS of the cohort were 31.4% and six months. Enhanced ORR was observed in TMEscore-high mGC patients (ORR = 59%). The survival analysis demonstrated that high TMEscore was significantly associated with a more favorable PFS and OS. Moreover, TMEscore was found to be a predictive biomarker that surpassed MSI and CPS (AUC = 0.873, 0.511, and 0.524, respectively). By integrating the TMEscore and clinical variables, the fused model further enhances the predictive efficiency and translational application in a clinical setting.
Conclusions: This prospective clinical study indicates that the TMEscore assay is a robust biomarker for screening patients with mGC who may derive survival benefits from ICB plus chemotherapy.
Funding: Guangdong Basic and Applied Basic Research Foundation (2023A1515011214), Science and Technology Program of Guangzhou (202206080011), and Guangzhou Science and Technology Project (2023A03J0722 and 2023A04J2357).
Keywords: Translation to patients; biomarker; gastric cancer; immunotherapy; tumor microenvironment.
Copyright © 2024 Elsevier Inc. All rights reserved.