Background: Assessing refractive errors under cycloplegia is recommended for paediatric patients; however, this may not always be feasible. In these situations, refraction has to rely on measurements made under active accommodation which may increase measurements variability and error. Therefore, evaluating the accuracy and precision of non-cycloplegic refraction and biometric measurements is clinically relevant. The Myopia Master, a novel instrument combining autorefraction and biometry, is designed for monitoring refractive error and ocular biometry in myopia management. This study assessed its repeatability and agreement for autorefraction and biometric measurements pre- and post-cycloplegia.
Methods: A prospective cross-sectional study evaluated a cohort of 96 paediatric patients that underwent ophthalmologic examination. An optometrist performed two repeated measurements of autorefraction and biometry pre- and post-cycloplegia. Test-retest repeatability (TRT) was assessed as differences between consecutive measurements and agreement as differences between post- and pre-cycloplegia measurements, for spherical equivalent (SE), refractive and keratometric J0/J45 astigmatic components, mean keratometry (Km) and axial length (AL).
Results: Cycloplegia significantly improved the SE repeatability (TRT, pre-cyclo: 0.65 D, post-cyclo: 0.31 D). SE measurements were more repeatable in myopes and emmetropes compared to hyperopes. Keratometry (Km) repeatability did not change with cycloplegia (TRT, pre-cyclo: 0.25 D, post-cyclo:0.27 D) and AL repeatability improved marginally (TRT, pre-cyclo: 0.14 mm, post-cyclo: 0.09 mm). Regarding pre- and post-cycloplegia agreement, SE became more positive by + 0.79 D, varying with refractive error. Myopic eyes showed a mean difference of + 0.31 D, while hyperopes differed by + 1.57 D. Mean keratometry, refractive and keratometric J0/J45 and AL showed no clinically significant differences.
Conclusions: Refractive error measurements, using the Myopia Master were 2.5x less precise pre-cycloplegia than post-cycloplegia. Accuracy of pre-cycloplegic refractive error measurements was often larger than the clinically significant threshold (0.25 D) and was refractive error dependent. The higher precision compared to autorefraction measurements, pre- and post-cycloplegia agreement and refractive error independence of AL measurements emphasize the superiority of AL in refractive error monitoring.
Keywords: Agreement; Axial length; Biometry; Cycloplegia; Refractive error; Repeatability.
© 2024. The Author(s).