The emergence of carbapenem-resistant bacteria especially carbapenem-resistant Escherichia coli (CREC) in food animals poses a serious threat to food safety and public health. Reports about the dissemination of carbapenem-resistant bacteria along the food animal production chain are scattered and mainly focus on swine and chicken. Abuse of antibiotics in duck farms is common especially in China which has the largest duck production industry, however, the CREC transmission between farmed ducks and slaughtered meats remains unclear and the role of slaughterhouse in disseminating CREC among duck meats remains largely unknown. Herein, we collected 251 fecal samples from five typical duck farms along with 125 slaughtered meat samples (25 from each farm) in the corresponding slaughterhouse in Anhui Province, China, in December 2018. All samples were screened for CREC isolates which were analyzed for the presence of carbapenemase genes and colistin resistance gene mcr. The resistance profiles, transferability, pulsed-field gel electrophoresis (PFGE), whole-genome sequencing and phylogenetic analysis of the CREC isolates from both ducks and meats were further characterized. This is the first report presenting the high prevalence of blaNDM-positive CREC isolates in ducks from duck farms (57.8 %) and slaughtered meats (33.6 %) in the corresponding slaughterhouse. Among the 203 blaNDM-positive CREC isolates obtained in this study, 19.2 % harbored mcr-1 and all CREC isolates showed resistance to nearly all currently available antibiotics (except tigecycline). Of note, mcr-1 was found in 17.8 % of the meat-derived CREC carrying blaNDM. Based on the PFGE analysis, clonal spread of blaNDM-positive CREC including some also carrying mcr-1 was found between farmed ducks and slaughtered duck meats even from different farms. Special attention should be paid to the clonal dissemination of meat-derived CREC within the slaughterhouse, which contributed to the high prevalence of blaNDM in slaughtered meats. Additionally, horizontal transmission mainly mediated by transferable blaNDM-5-bearing IncX3 plasmids, untypable blaNDM-1-bearing plasmids and mcr-1-bearing IncHI2 plasmids further facilitated the rapid spread of such multidrug-resistant strains. Notably, the blaNDM-bearing plasmids and mcr-1-bearing plasmids in CREC from meats were highly similar to those from animals and humans. More worryingly, the phylogenomic analysis showed that CREC isolates from both ducks and corresponding meats clustered with previously reported human CREC isolates carrying mcr-1 in different geographical areas including China. These findings further prove that the CREC and resistance plasmids in farmed ducks could transmit to meats even from different farms via the slaughterhouse and then trigger infections in humans. The high prevalence and clonal transmission of CREC isolates including those also carrying mcr-1 between ducks and meats are alarming, and urgent control measures are required to reduce the dissemination of such organisms.
Keywords: Duck; E. coli; Slaughterhouse; Transmission; bla(NDM).
Copyright © 2024 Elsevier B.V. All rights reserved.