One of the main causes of cancer-related mortality for women worldwide is breast cancer (BC). The XRCC2 gene, essential for DNA repair, has been implicated in cancer susceptibility. This study aims to evaluate the association between XRCC2 and BC risk. The study was conducted at Zheen International Hospital in Erbil, Iraq, between 2021 and 2024 with a total of 88 samples, including 44 paired normal and cancer tissue samples. Mutation analysis was performed using Next-Generation Sequencing, coupled with in silico tools for variant impact prediction. Expression levels were assessed through RT-PCR, and methylation status was determined using methylation-sensitive restriction enzyme digestion PCR. The study identified seven inherited germline variants in the XRCC2 gene, with five of these mutations being Uncertain Significance, one being Likely Pathogenic, and one being Likely benign. RNA purity was found high with mean A260/280 ratios of 1.986 ± 0.097 in normal (N) and 1.963 ± 0.092 in tumor (T) samples. Tumor samples exhibited a higher RNA concentration (78.56 ± 40.87 ng/µL) than normal samples (71.44 ± 40.79 ng/µL). XRCC2 gene expression was significantly upregulated in tumor tissue, with marked increases in patients aged 40-55 and >56 years and in higher cancer grades (II and III) and invasive ductal carcinoma (p-values ranging from <0.0001 to 0.0392). DNA methylation rates in tumor tissues were low (7%), suggesting limited regulation by methylation. The study suggests that XRCC2 can be classified as an oncogene and that its structural investigation by targeted NGS and expression evaluation can be used as a potential biomarker in BC.