Retinal layer thinning for monitoring disease-modifying treatment in relapsing multiple sclerosis-Evidence for applying a rebaselining concept

Mult Scler. 2024 Aug;30(9):1128-1138. doi: 10.1177/13524585241267257. Epub 2024 Aug 7.

Abstract

Background: Employing a rebaselining concept may reduce noise in retinal layer thinning measured by optical coherence tomography (OCT).

Methods: From an ongoing prospective observational study, we included patients with relapsing multiple sclerosis (RMS), who had OCT scans at disease-modifying treatment (DMT) start (baseline), 6-12 months after baseline (rebaseline), and ⩾12 months after rebaseline. Mean annualized percent loss (aL) rates (%/year) were calculated both from baseline and rebaseline for peripapillary-retinal-nerve-fiber-layer (aLpRNFLbaseline/aLpRNFLrebaseline) and macular-ganglion-cell-plus-inner-plexiform-layer (aLGCIPLbaseline/aLGCIPLrebaseline) by mixed-effects linear regression models.

Results: We included 173 RMS patients (mean age 31.7 years (SD 8.8), 72.8% female, median disease duration 15 months (12-94) median baseline-to-last-follow-up-interval 37 months (18-71); 56.6% moderately effective DMT (M-DMT), 43.4% highly effective DMT (HE-DMT)). Both mean aLpRNFLbaseline and aLGCIPLbaseline significantly increased in association with relapse (0.51% and 0.26% per relapse, p < 0.001, respectively) and disability worsening (1.10% and 0.48%, p < 0.001, respectively) before baseline, but not with DMT class. Contrarily, neither aLpRNFLrebaseline nor aLGCIPLrebaseline was dependent on relapse or disability worsening before baseline, while HE-DMT significantly lowered aLpRNFLrebaseline (by 0.31%, p < 0.001) and aLGCIPLrebaseline (0.25%, p < 0.001) compared with M-DMT.

Conclusions: Applying a rebaselining concept significantly improves differentiation of DMT effects on retinal layer thinning by avoiding carry-over confounding from previous disease activity.

Keywords: GCIPL; Multiple sclerosis; OCT; RNFL; disease-modifying treatment; monitoring; rebaseline; retinal thinning.

Publication types

  • Observational Study

MeSH terms

  • Adult
  • Female
  • Humans
  • Male
  • Multiple Sclerosis, Relapsing-Remitting* / diagnostic imaging
  • Multiple Sclerosis, Relapsing-Remitting* / drug therapy
  • Multiple Sclerosis, Relapsing-Remitting* / pathology
  • Multiple Sclerosis, Relapsing-Remitting* / physiopathology
  • Prospective Studies
  • Retina / diagnostic imaging
  • Retina / drug effects
  • Retina / pathology
  • Tomography, Optical Coherence*
  • Young Adult