Synergistic reduction of air pollutants and carbon dioxide (CO2) emissions is currently a key environmental policy in China, yet provincial-level studies remain scarce. To fill the gap, this study developed a coupled emission inventory from 2013 to 2020 in Shanxi, a coal-dependent province critical to China's energy security. This facilitated the investigation of emission trends, primary sources, synergistic effects, and spatial distribution. The results show that, while air pollutant emissions decreased significantly during the study period, CO2 emissions increased slightly. The main emitters of SO2, NOx, and CO2 were identified as power, heating, industrial boilers, and residential coal combustion. The iron and steel industry contributed significantly to PM2.5 emissions, coke production to VOCs, and vehicles to NOx and VOCs. NH3 emissions were mainly attributed to fertilizer use and livestock. Synergistic reductions were evident in coal-related sources, especially industrial boilers and residential coal combustion, underlining the importance of optimizing the energy structure. Anthropogenic emissions were concentrated in basins with poor dispersion conditions. Taiyuan, Yuncheng, and Linfen emerged as key areas for synergistic reduction efforts. This study provides important insights for environmental policy development in Shanxi and other coal-dependent regions.
Keywords: Air pollution; Carbon dioxide; Emission inventory; Shanxi; Synergistic reduction.
Copyright © 2024 Elsevier B.V. All rights reserved.