High toxicity is the main reason for the limited application of traditional corrosion inhibitors. Herein, it is critical to find a green, efficient, and long-term stable alternative substitute for the hazardous and conventional corrosion inhibitor. Ambrosia trifida L is widely distributed in fields and riverside wetlands as an invasive plant in China. According to the concept of turning waste into treasure, the extract of Ambrosia trifida L leaves (ATL) has the potential to address this issue due to its natural origin and abundant presence of heterocyclic organics. Therefore, ATL, as a green corrosion inhibitor, is prepared for the first time via a simple water-based extraction method. FT-IR (Fourier transform infrared spectroscopy) and UV-Vis (UV-visible) indicate that ATL extract contains abundant heterocyclic organics with conjugated structures, which exhibit the potential to become a high-efficiency inhibitor. Notably, the active sites of ATL molecules and their interaction with Q235 steel at the molecular/atomic level are revealed via theoretical calculations. The highest Ebinding value observed for the major components in the ATL extract is 259.66 kcal/mol, implying a significant adsorption capacity. The electrochemical results verify that microdose ATL extract can prominently inhibit steel corrosion, and the highest inhibition efficiency (η) is 97.5% (1000 mg/L). Following immersion for 24 h, the η value is enhanced to 99.0%, indicating a reliable and long-term ATL extract protection film is formed on the steel surface in harsh acidic solutions. The results of the weight loss, SEM (scanning electron microscope), and LSCM (laser scanning confocal microscopy) are consistent with the above conclusions. Finally, this study anticipates providing theoretical support for developing novel green plant extract inhibitors and aiding in their application in industrial pickling environments.
Keywords: Q235 steel; corrosion; electrochemistry; plant extract; theoretical calculation.