[Diagnosis of Rib Fracture Using Artificial Intelligence on Chest CT Images of Patients with Chest Trauma]

J Korean Soc Radiol. 2024 Jul;85(4):769-779. doi: 10.3348/jksr.2023.0099. Epub 2024 Mar 5.
[Article in Korean]

Abstract

Purpose: To determine the pros and cons of an artificial intelligence (AI) model developed to diagnose acute rib fractures in chest CT images of patients with chest trauma.

Materials and methods: A total of 1209 chest CT images (acute rib fracture [n = 1159], normal [n = 50]) were selected among patients with chest trauma. Among 1159 acute rib fracture CT images, 9 were randomly selected for AI model training. 150 acute rib fracture CT images and 50 normal ones were tested, and the remaining 1000 acute rib fracture CT images was internally verified. We investigated the diagnostic accuracy and errors of AI model for the presence and location of acute rib fractures.

Results: Sensitivity, specificity, positive and negative predictive values, and accuracy for diagnosing acute rib fractures in chest CT images were 93.3%, 94%, 97.9%, 82.5%, and 95.6% respectively. However, the accuracy of the location of acute rib fractures was low at 76% (760/1000). The cause of error in the diagnosis of acute rib fracture seemed to be a result of considering the scapula or clavicle that were in the same position (66%) or some ribs that were not recognized (34%).

Conclusion: The AI model for diagnosing acute rib fractures showed high accuracy in detecting the presence of acute rib fractures, but diagnosis of the exact location of rib fractures was limited.

목적: 외상 환자 흉부 CT에서 급성 갈비뼈 골절을 진단하기 위해 개발된 인공지능의 장단점에 대해서 알아보고자 하였다.

대상과 방법: 외상으로 응급실에 내원했던 환자들 중 급성 갈비뼈 골절(n = 1159) 또는 정상 (n = 50)으로 진단된 1209명의 흉부 CT를 무작위로 선택하였다. 이 중 9명의 급성 갈비뼈 골절 흉부 CT로 인공지능 모델 개발과 훈련을 했으며, 150명의 갈비뼈 골절 흉부 CT와 50명의 정상 흉부 CT로 테스트를 하였고, 나머지 1000명의 급성 갈비뼈 골절 흉부 CT로 내부 검증을 하였다. 급성 갈비뼈 골절에 대한 인공지능 모델의 골절의 유무와 위치에 대한 진단적 정확성과 오류에 대해서 알아보았다.

결과: 개발된 인공지능 모델을 테스트 결과 급성 갈비뼈 골절 유무에 대한 민감도, 특이도, 양성 예측도, 음성예측도, 정확도는 각각 93.3%, 94%, 97.9%, 82.5%, 95.6%였다. 내부 검증을 했을 때 급성 갈비뼈 골절 유무에 대한 정확도는 96%로 상승되었다. 그러나 급성 갈비뼈 골절 위치의 정확도는 76% (760/1000)로 낮았으며, 그 원인으로는 같은 위치에 있는 견갑골이나 쇄골을 갈비뼈로 잘못 인식(66%) 하거나 일부 갈비뼈를 인식하지 못하는 경우(34%)가 많았다.

결론: 급성 갈비뼈 골절 진단을 위한 인공지능 모델이 급성 갈비뼈 골절의 유무 진단에는 높은 정확도를 보였지만 갈비뼈 골절의 정확한 위치를 진단하는 데는 제한점이 있었다.

Publication types

  • English Abstract