VIP1 and its close homologs confer mechanical stress tolerance in Arabidopsis leaves

Plant Physiol Biochem. 2024 Oct:215:109021. doi: 10.1016/j.plaphy.2024.109021. Epub 2024 Aug 6.

Abstract

VIP1, an Arabidopsis thaliana basic leucine zipper transcription factor, and its close homologs are imported from the cytoplasm to the nucleus when cells are exposed to mechanical stress. They bind to AGCTG (G/T) and regulate mechanical stress responses in roots. However, their role in leaves is unclear. To clarify this, mutant lines (QM1 and QM2) that lack the functions of VIP1 and its close homologs (bZIP29, bZIP30 and PosF21) were generated. Brushing more severely damaged QM1 and QM2 leaves than wild-type leaves. Genes regulating stress responses and cell wall properties were downregulated in brushed QM2 leaves and upregulated in brushed VIP1-GFP-overexpressing (VIP1-GFPox) leaves compared to wild-type leaves in a transcriptome analysis. The VIP1-binding sequence AGCTG (G/T) was enriched in the promoters of genes downregulated in brushed QM2 leaves compared to wild-type leaves and in those upregulated in brushed VIP1-GFPox leaves. Calmodulin-binding transcription activators (CAMTAs) are known regulators of mechanical stress responses, and the CAMTA-binding sequence CGCGT was enriched in the promoters of genes upregulated in the brushed QM2 leaves and in those downregulated in the brushed VIP1-GFPox leaves. These findings suggest that VIP1 and its homologs upregulate genes via AGCTG (G/T) and influence CAMTA-dependent gene expression to enhance mechanical stress tolerance in leaves.

Keywords: Arabidopsis thaliana; Calcium; Mechanical stress; Protein dephosphorylation; Protein-protein interactions; Thigmotropism; Transcription factor.

MeSH terms

  • Arabidopsis Proteins* / genetics
  • Arabidopsis Proteins* / metabolism
  • Arabidopsis* / genetics
  • Arabidopsis* / metabolism
  • Basic-Leucine Zipper Transcription Factors / genetics
  • Basic-Leucine Zipper Transcription Factors / metabolism
  • Gene Expression Regulation, Plant*
  • Plant Leaves* / genetics
  • Plant Leaves* / metabolism
  • Stress, Mechanical
  • Stress, Physiological / genetics

Substances

  • Arabidopsis Proteins
  • VIP1 protein, Arabidopsis
  • Basic-Leucine Zipper Transcription Factors