Aim: Vascular aging is an important risk factor for cardiovascular diseases, including abdominal aortic aneurysm (AAA) and pathological aortic dilatation, playing a critical role in the morbidity and mortality of older adults. Vascular calcification, a phenotype of vascular aging, is frequently associated with AAA. However, this association remains unclear owing to the lack of animal models. This study investigated the effects of a high-phosphate diet (HPD), a prominent trigger of vascular calcification in AAA.
Methods: Eight-week-old male mice were fed either a normal diet (ND; Ca 1.18%/P 1.07% = 1.10) or an HPD (Ca 1.23%/P 1.65% = 0.75) for 4 weeks. Subsequently, AAA was induced using CaCl2 application and angiotensin II (AngII) infusion for 4 weeks.
Results: The HPD resulted in more pronounced AAA formation than did the ND. Importantly, vascular calcification was observed only in the aorta of the HPD mice. Enhanced Runt-related transcription factor 2 expression and apoptosis (downregulation of growth arrest-specific gene 6/pAkt survival pathway), two major mechanisms of vascular calcification, were also observed. Furthermore, increased IL-6 and F4/80 expression was observed in the aorta of HPD mice. In RAW264.7 cells, inorganic phosphate enhanced IL-6 and IL-1β expression under AngII priming. Ferric citrate, a phosphate binder, significantly inhibited HPD-induced AAA formation.
Conclusions: These findings suggest that HPD induces vascular calcification and AAA formation, possibly through inflammation. This murine model suggests that vascular calcification induced by phosphate burden may be a therapeutic target for vascular diseases, including AAA. Geriatr Gerontol Int 2024; 24: 973-981.
Keywords: abdominal aortic aneurysm; apoptosis; inflammation; inorganic phosphate; vascular calcification.
© 2024 The Author(s). Geriatrics & Gerontology International published by John Wiley & Sons Australia, Ltd on behalf of Japan Geriatrics Society.