Hospital laboratory results are a significant data source in Clinical Data Ware-houses (CDW). To ensure comparability across healthcare organizations and for use in research studies, the results need to be interoperable. The LOINC (Logical Observation Identifiers, Names, and Codes) terminology provides a unique identifier for local codes for lab tests, enabling interoperability. However, in real-world, events occur over time and can disrupt the distribution of lab result values. For example, new equipment may be added to the analysis pipeline, a machine may be replaced, formulas may evolve due to new scientific knowledge, and legacy terminologies may be adopted. This article proposes a pipeline for creating an automated dashboard to monitor these events and data quality. We used automatic change point detection methods such as PELT for event detection in lab results. For a given LOINC code, we create a dashboard that summarizes the number of local codes mapped, and the number of patients (by sex, age, and hospital service) associated with the code. Finally, the dashboard enables the visualization of time events that disrupt the signal distribution. The biologists were able to explain to us the changes for several biological assays.
Keywords: CDW; automated dashboard; lab results; monitoring.