Objective: Depression and insomnia frequently co-occur, but the neural mechanisms between patients with varying degrees of these conditions are not fully understood. The specific topological features and connectivity patterns of this co-morbidity have not been extensively studied. This study aimed to investigate the topological characteristics of topological characteristics and functional connectivity of brain networks in depressed patients with insomnia.
Methods: Resting-state functional magnetic resonance imaging data from 32 depressed patients with a high level of insomnia (D-HI), 35 depressed patients with a low level of insomnia (D-LI), and 81 healthy controls (HC) were used to investigate alterations in brain topological organization functional networks. Nodal and global properties were analyzed using graph-theoretic techniques, and network-based statistical analysis was employed to identify changes in brain network functional connectivity.
Results: Compared to the HC group, both the D-HI and D-LI groups showed an increase in the global efficiency (Eglob) values, local efficiency (Eloc) was decreased in the D-HI group, and Lambda and shortest path length (Lp) values were decreased in the D-LI group. At the nodal level, the right parietal nodal clustering coefficient (NCp) values were reduced in D-HI and D-LI groups compared to those in HC. The functional connectivity of brain networks in patients with D-HI mainly involves default mode network (DMN)-cingulo-opercular network (CON), DMN-visual network (VN), DMN-sensorimotor network (SMN), and DMN-cerebellar network (CN), while that in patients with D-LI mainly involves SMN-CON, SMN-SMN, SMN-VN, and SMN-CN. The values of the connection between the midinsula and postoccipital gyrus was negatively correlated with scores for early awakening in D-HI.
Conclusion: These findings may contribute to our understanding of the underlying neuropsychological mechanisms in depressed patients with insomnia.
Keywords: Depressed patients with insomnia; Graph theoretic analysis; Network-based statistic; Resting-state functional magnetic resonance imaging.
Copyright © 2024 Elsevier B.V. All rights reserved.