Intracellular cholesterol metabolism is regulated by the SREBP-2 and LXR signaling pathways. The effects of inflammation on these molecular mechanisms remain poorly studied, especially at the blood-brain barrier (BBB) level. Tumor necrosis factor α (TNFα) is a proinflammatory cytokine associated with BBB dysfunction. Therefore, the aim of our study was to investigate the effects of TNFα on BBB cholesterol metabolism, focusing on its underlying signaling pathways. Using a human in vitro BBB model composed of human brain-like endothelial cells (hBLECs) and brain pericytes (HBPs), we observed that TNFα increases BBB permeability by degrading the tight junction protein CLAUDIN-5 and activating stress signaling pathways in both cell types. TNFα also promotes cholesterol release and decreases cholesterol accumulation and APOE secretion. In hBLECs, the expression of SREBP-2 targets (LDLR and HMGCR) is increased, while ABCA1 expression is decreased. In HBPs, only LDLR and ABCA1 expression is increased. TNFα treatment also induces 25-hydroxycholesterol (25-HC) production, a cholesterol metabolite involved in the immune response and intracellular cholesterol metabolism. 25-HC pretreatment attenuates TNFα-induced BBB leakage and partially alleviates the effects of TNFα on ABCA1, LDLR, and HMGCR expression. Overall, our results suggest that TNFα favors cholesterol efflux via an LXR/ABCA1-independent mechanism at the BBB, while it activates the SREBP-2 pathway. Treatment with 25-HC partially reversed the effect of TNFα on the LXR/SREBP-2 pathways. Our study provides novel perspectives for better understanding cerebrovascular signaling events linked to BBB dysfunction and cholesterol metabolism in neuroinflammatory diseases.
Keywords: 25-hydroxycholesterol; ABCA1; Blood-brain barrier; Brain pericytes; Inflammation; LXR; Oxysterols; SREBP-2; TNFα; Vascular biology.
Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.