The global impact of the SARS-CoV-2 pandemic has underscored the need for a deeper understanding of viral evolution to anticipate new viruses or variants. Genetic recombination is a fundamental mechanism in viral evolution, yet it remains poorly understood. In this study, we conducted a comprehensive research on the genetic regions associated with genetic recombination features in SARS-CoV-2. With this aim, we implemented a two-phase transfer learning approach using genomic spectrograms of complete SARS-CoV-2 sequences. In the first phase, we utilized a pre-trained VGG-16 model with genomic spectrograms of HIV-1, and in the second phase, we applied HIV-1 VGG-16 model to SARS-CoV-2 spectrograms. The identification of key recombination hot zones was achieved using the Grad-CAM interpretability tool, and the results were analyzed by mathematical and image processing techniques. Our findings unequivocally identify the SARS-CoV-2 Spike protein (S protein) as the pivotal region in the genetic recombination feature. For non-recombinant sequences, the relevant frequencies clustered around 1/6 and 1/12. In recombinant sequences, the sharp prominence of the main hot zone in the Spike protein prominently indicated a frequency of 1/6. These findings suggest that in the arithmetic series, every 6 nucleotides (two triplets) in S may encode crucial information, potentially concealing essential details about viral characteristics, in this case, recombinant feature of a SARS-CoV-2 genetic sequence. This insight further underscores the potential presence of multifaceted information within the genome, including mathematical signatures that define an organism's unique attributes.
Copyright: © 2024 Guerrero-Tamayo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.