Ozone sensitivity to high energy demand day electricity and onroad emissions during LISTOS

J Air Waste Manag Assoc. 2024 Nov;74(11):804-819. doi: 10.1080/10962247.2024.2396400. Epub 2024 Sep 10.

Abstract

Using a high-resolution, 1.33 km by 1.33 km coupled Weather Research and Forecasting-Community Multi-scale Air Quality Model (WRF-CMAQ), we quantify the impact of emissions of nitrogen oxides (NOx) from high energy demand day (HEDD) electricity generating units (EGU) and onroad vehicles on ambient ozone air quality in the Long Island Sound Tropospheric Ozone Study (LISTOS) region covering New York City (NYC); Long Island, NY; coastal Connecticut; and neighboring areas. We test sensitivity scenarios to quantify HEDD EGU NOx contributions to ozone: (1) zero out HEDD EGU emissions, (2) dispatch HEDD EGUs starting with the lowest NOx emitting units first, (3) reduce onroad emissions by 90%, (4) combine zero out HEDD EGU emissions and reducing onroad emissions by 90%, and (5) dispatch HEDD EGUs starting with the lowest emitting units coupled with a reduction in onroad emissions by 90%. Results determine that HEDD EGUs lead to highly localized impacts on ambient concentrations of ozone while onroad emission reductions lead to large-scale regional concentration impacts. Further, reducing onroad emissions by 90% leads to spatially smaller VOC-limited regions and spatially larger transitional and NOX-limited regions around NYC. Despite the limited scale at which the EGU emission reductions occur, modifying HEDD EGU NOX emissions still provides substantial benefits in reducing ozone concentrations in the region, particularly at elevated ozone concentrations above 70 ppb.Implications: High-resolution coupled meteorology-chemistry modeling was used to quantify the impacts of high energy demand day (HEDD) electricity generating units (EGUs) and onroad transportation emissions changes on ozone air quality in the LISTOS region. Despite being highly localized and variable, HEDD EGUs NOX emissions sensitivity tests led to quantifiable changes in ozone. Further, reducing onroad emissions by 90% produced large decreases in ozone concentrations and led to a more NOX-sensitive ozone photochemical regime. With a transition to greater NOX-sensitivity, urban NOX-titration weakens and ozone is more likely to decline with the removal of additional NOX from sources like HEDD EGUs.

MeSH terms

  • Air Pollutants* / analysis
  • Air Pollution / analysis
  • Air Pollution / prevention & control
  • Connecticut
  • Electricity
  • Environmental Monitoring / methods
  • New York City
  • Nitrogen Oxides* / analysis
  • Ozone* / analysis
  • Vehicle Emissions* / analysis

Substances

  • Ozone
  • Air Pollutants
  • Vehicle Emissions
  • Nitrogen Oxides