Glutathione-S-Transferase Theta 2 (GSTT2) Modulates the Response to Bacillus Calmette-Guérin Immunotherapy in Bladder Cancer Patients

Int J Mol Sci. 2024 Aug 16;25(16):8947. doi: 10.3390/ijms25168947.

Abstract

Glutathione-S-transferases (GST) enzymes detoxify xenobiotics and are implicated in response to anticancer therapy. This study evaluated the association of GST theta 1 (GSTT1), GSTT2, and GSTT2B with Mycobacterium bovis Bacillus Calmette-Guérin (BCG) response in non-muscle-invasive bladder cancer treatment. In vitro assessments of GSTT2 knockout (KO) effects were performed using cell lines and dendritic cells (DCs) from GSTT2KO mice. Deletion of GSTT2B, GSTT1, and single-nucleotide polymorphisms in the promoter region of GSTT2 was analysed in patients (n = 205) and healthy controls (n = 150). Silencing GSTT2 expression in MGH cells (GSTT2BFL/FL) resulted in increased BCG survival (p < 0.05) and decreased cellular reactive oxygen species. In our population, there are 24.2% with GSTT2BDel/Del and 24.5% with GSTT2BFL/FL. With ≤ 8 instillations of BCG therapy (n = 51), 12.5% of GSTT2BDel/Del and 53.8% of GSTT2BFL/FL patients had a recurrence (p = 0.041). With ≥9 instillations (n = 153), the disease recurred in 45.5% of GSTT2BDel/Del and 50% of GSTT2BFL/FL. GSTT2FL/FL patients had an increased likelihood of recurrence post-BCG therapy (HR 5.5 [1.87-16.69] p < 0.002). DCs from GSTT2KO mice produced three-fold more IL6 than wild-type DCs, indicating a robust inflammatory response. To summarise, GSTT2BDel/Del patients respond better to less BCG therapy and could be candidates for a reduced surveillance regimen.

Keywords: BCG vaccine; bladder cancer; genetic; glutathione S-transferase theta 2; immunotherapy; polymorphism; urinary bladder neoplasms.

MeSH terms

  • Aged
  • Animals
  • BCG Vaccine* / therapeutic use
  • Cell Line, Tumor
  • Dendritic Cells / immunology
  • Dendritic Cells / metabolism
  • Female
  • Glutathione Transferase* / genetics
  • Glutathione Transferase* / metabolism
  • Humans
  • Immunotherapy* / methods
  • Male
  • Mice
  • Mice, Knockout
  • Middle Aged
  • Mycobacterium bovis
  • Polymorphism, Single Nucleotide
  • Urinary Bladder Neoplasms* / drug therapy
  • Urinary Bladder Neoplasms* / genetics
  • Urinary Bladder Neoplasms* / immunology
  • Urinary Bladder Neoplasms* / therapy

Substances

  • Glutathione Transferase
  • BCG Vaccine
  • glutathione S-transferase T1