Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new emerging coronavirus that caused coronavirus disease 2019 (COVID-19). Whole-genome tracking of SARS-CoV-2 enhanced our understanding of the mechanism of the disease, control, and prevention of COVID-19.
Methods: we analyzed 3368 SARS-CoV-2 protein sequences from Iran and compared them with 15.6 million global sequences in the GISAID database, using the Wuhan-Hu-1 strain as a reference.
Results: Our investigation revealed that NSP12-P323L, ORF9c-G50N, NSP14-I42V, membrane-A63T, Q19E, and NSP3-G489S were found to be the most frequent mutations among Iranian SARS-CoV-2 sequences. Furthermore, it was observed that more than 94% of the SARS-CoV-2 genome, including NSP7, NSP8, NSP9, NSP10, NSP11, and ORF8, had no mutations when compared to the Wuhan-Hu-1 strain. Finally, our data indicated that the ORF3a-T24I, NSP3-G489S, NSP5-P132H, NSP14-I42V, envelope-T9I, nucleocapsid-D3L, membrane-Q19E, and membrane-A63T mutations might be responsible factors for the surge in the SARS-CoV-2 Omicron variant wave in Iran.
Conclusions: real-time genomic surveillance is crucial for detecting new SARS-CoV-2 variants, updating diagnostic tools, designing vaccines, and understanding adaptation to new environments.
Keywords: COVID-19; SARS-CoV-2; coronavirus; genetic variability; genomics; mutation hotspot; vaccines.