Background: Previous studies have found that inhibitory priming with continuous theta burst stimulation (cTBS) can enhance the effect of subsequent excitatory conditioning stimuli with intermittent theta burst stimulation (iTBS) in the upper limbs. However, whether this combined stimulation approach elicits a comparable compensatory response in the lower extremities remains unclear. This study aimed to investigate how cTBS preconditioning modulated the effect of iTBS on motor cortex excitability related to the lower limb in healthy individuals.
Methods: Using a randomised cross-over design, a total of 25 healthy participants (19 females, mean age = 24.80 yr) were recruited to undergo three different TBS protocols (cTBS + iTBS, sham cTBS + iTBS, sham cTBS + sham iTBS) in a random order. Each TBS intervention was administered with one-week intervals. cTBS and iTBS were administered at an intensity of 80% active motor threshold (AMT) delivering a total of 600 pulses. Before intervention (T0), immediately following intervention (T1), and 20 min after intervention (T2), the corticomotor excitability was measured for the tibialis anterior muscle of participants' non-dominant leg using a Magneuro100 stimulator and matched double-cone coil. The average amplitude of the motor-evoked potential (MEP) induced by applying 20 consecutive monopulse stimuli at an intensity of 130% resting motor threshold (RMT) was collected and analysed.
Results: Compare with T0 time, the MEP amplitude (raw and normalised) at T1 and T2 showed a statistically significant increase following the cTBS + iTBS protocol (p < 0.01), but no significant differences were observed in amplitude changes following other protocols (sham cTBS + iTBS and sham cTBS + sham iTBS) (p > 0.05). Furthermore, no statistically significant difference was found among the three protocols at any given time point (p > 0.05).
Conclusions: Preconditioning the lower extremity motor cortex with cTBS prior to iTBS intervention can promptly enhance its excitability in healthy participants. This effect persists for a minimum duration of 20 min.
Clinical trial registration: No: ChiCTR2300069315. Registered 13 March, 2023, https://www.chictr.org.cn.
Keywords: cortical excitability; healthy participants; lower limb; preconditioning; theta burst stimulation.
© 2024 The Author(s). Published by IMR Press.