Solid state NMR spectral editing of histidine, arginine and lysine using Hadamard encoding

bioRxiv [Preprint]. 2024 Jul 24:2024.07.23.604848. doi: 10.1101/2024.07.23.604848.

Abstract

The NMR signals from protein sidechains are rich in information about intra- and inter-molecular interactions, but their detection can be complicated due to spectral overlap as well as conformational and hydrogen exchange. In this work, we demonstrate a protocol for multi-dimensional solid-state NMR spectral editing of signals from basic sidechains based on Hadamard matrix encoding. The Hadamard method acquires multi-dimensional experiments in such a way that both the backbone and under-sampled sidechain signals can be decoded for unambiguous editing in the 15 N spectral frequency dimension. All multi-dimensional 15 N-edited solid-state NMR experiments can be acquired using this strategy, thereby accelerating the acquisition of spectra spanning broad frequency bandwidth. Application of these methods to the ferritin nanocage, reveals signals from N atoms from His, Arg, Lys and Trp sidechains, as well as their tightly bound, ordered water molecules. The Hadamard approach adds to the arsenal of spectroscopic approaches for protein NMR signal detection.

Publication types

  • Preprint