Hypothalamic VMHdm SF1 neurons are activated by predator cues and are necessary and sufficient for instinctive defensive responses. However, such data do not distinguish which features of a predator encounter are encoded by VMHdm SF1 neural activity. To address this issue, we imaged VMHdm SF1 neurons at single-cell resolution in freely behaving mice exposed to a natural predator in varying contexts. Our results reveal that VMHdm SF1 neurons do not represent different defensive behaviors, but rather encode predator identity and multiple predator-evoked internal states, including threat-evoked fear/anxiety; neophobia or arousal; predator imminence; and safety. Notably, threat and safety are encoded bi-directionally by anti-correlated subpopulations. Finally, individual differences in predator defensiveness are correlated with differences in VMHdm SF1 response dynamics. Thus, different threat-related internal state variables are encoded by distinct neuronal subpopulations within a genetically defined, anatomically restricted hypothalamic cell class.
Highlights: Distinct subsets of VMHdm SF1 neurons encode multiple predator-evoked internal states. Anti-correlated subsets encode safety vs. threat in a bi-directional mannerA population code for predator imminence is identified using a novel assay VMHdm SF1 dynamics correlate with individual variation in predator defensiveness.