MR Molecular Imaging of Extradomain-B Fibronectin for Assessing Progression and Therapy Resistance of Prostate Cancer

Chem Biomed Imaging. 2024 Jun 11;2(8):560-568. doi: 10.1021/cbmi.4c00002. eCollection 2024 Aug 26.

Abstract

Accurate assessment and characterization of the progression and therapy response of prostate cancer are essential for precision healthcare of patients diagnosed with the disease. MRI is a clinical imaging modality routinely used for diagnostic imaging and treatment planning of prostate cancer. Extradomain B fibronectin (EDB-FN) is an oncofetal subtype of fibronectin highly expressed in the extracellular matrix of aggressive cancers, including prostate cancer. It is a promising molecular target for the detection and risk-stratification of prostate cancer with high-resolution MR molecular imaging (MRMI). In this study, we investigated the effectiveness of MRMI with an EDB-FN specific contrast agent MT218 for assessing the progression and therapy resistance of prostate cancer. Low grade LNCaP prostate cancer cells became an invasive phenotype LNCaP-CXCR2 with elevated EDB-FN expression after acquisition of the C-X-C motif chemokine receptor 2 (CXCR2). MT218-MRMI showed brighter signal enhancement in LNCaP-CXCR2 tumor xenografts with a ∼2-fold contrast-to-noise (CNR) increase than in LNCaP tumors in mice. Enzalutamide-resistant C4-2-DR prostate cancer cells were more invasive, with higher EDB-FN expression than parental C4-2 cells. Brighter signal enhancement with a ∼2-fold CNR increase was observed in the C4-2-DR xenografts compared to that of C4-2 tumors in mice with MT218-MRMI. Interestingly, when invasive PC3 prostate cancer cells developed resistance to paclitaxel, the drug-resistant PC3-DR cells became less invasive with reduced EDB-FN expression than the parental PC3 cells. MT218-MRMI detected reduced brightness in the PC3-DR xenografts with more than 2-fold reduction of CNR compared to PC3 tumors in mice. The signal enhancement in all tumors was supported by the immunohistochemical staining of EDB-FN with the G4 monoclonal antibody. The results indicate that MRMI of EDB-FN with MT218 has promise for detection, risk stratification, and monitoring the progression and therapy response of invasive prostate cancer.