Clinical relevance: Glaucoma is a complex eye condition with varied morphological and clinical presentations, making diagnosis and management challenging. The lack of a consensus definition for glaucoma or glaucomatous optic neuropathy further complicates the development of universal diagnostic tools. Developing robust artificial intelligence (AI) models for glaucoma screening is essential for early detection and treatment but faces significant obstacles. Effective deep learning algorithms require large, well-curated datasets from diverse patient populations and imaging protocols. However, creating centralized data repositories is hindered by concerns over data sharing, patient privacy, regulatory compliance, and intellectual property. Federated Learning (FL) offers a potential solution by enabling data to remain locally hosted while facilitating distributed model training across multiple sites.
Methods: A comprehensive literature review was conducted on the application of Federated Learning in training AI models for glaucoma screening. Publications from 1950 to 2024 were searched using databases such as PubMed and IEEE Xplore with keywords including "glaucoma," "federated learning," "artificial intelligence," "deep learning," "machine learning," "distributed learning," "privacy-preserving," "data sharing," "medical imaging," and "ophthalmology." Articles were included if they discussed the use of FL in glaucoma-related AI tasks or addressed data sharing and privacy challenges in ophthalmic AI development.
Results: FL enables collaborative model development without centralizing sensitive patient data, addressing privacy and regulatory concerns. Studies show that FL can improve model performance and generalizability by leveraging diverse datasets while maintaining data security. FL models have achieved comparable or superior accuracy to those trained on centralized data, demonstrating effectiveness in real-world clinical settings.
Conclusions: Federated Learning presents a promising strategy to overcome current obstacles in developing AI models for glaucoma screening. By balancing the need for extensive, diverse training data with the imperative to protect patient privacy and comply with regulations, FL facilitates collaborative model training without compromising data security. This approach offers a pathway toward more accurate and generalizable AI solutions for glaucoma detection and management.
Financial disclosure(s): Proprietary or commercial disclosure may be found after the references in the Footnotes and Disclosures at the end of this article.
Keywords: Artificial intelligence; Federated learning; Glaucoma; Privacy.
Copyright © 2024 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.