Microplastic pollution has raised significant concerns among scientific communities and society in recent years due to its increase and lesser-known effects on the environment. To improve the knowledge of microplastic pollution in freshwater, we investigated microplastics in Anzali Wetland, a Ramsar site in northern Iran, as well as its nine main entering rivers. The extracted microplastics were characterized via visual identification, SEM-EDX, and μ-Raman methods. Microplastics (size range: 50-5000 μm) were found in all water and sediment samples with concentration of fibrous particles as well as polypropylene and polyethylene polymers. The mean concentration of microplastics in bottom sediment and surface water samples of the wetland was 301 ± 222 particles∙kg-1 d.w. and 235 ± 115 particles∙m-3 (0.23 particles∙L-1), respectively. The microplastic concentration in the central and eastern parts of the wetland was higher than in other areas; however, the mean concentrations revealed homogeneity across the wetland area. Water properties (dissolved oxygen, pH, temperature, electrical conductivity, and salinity in water) did not affect the concentration of microplastic particles, though correlational analysis revealed a strong positive association between microplastic quantity and turbidity. There was a significant positive relationship between microplastic concentration and the percentage of clay in sediment samples. The quantity of microplastics in river water was higher than in wetland water, but the difference between the results was not significant. However, the quantity of microplastics in the river's littoral sediment was higher than in the bottom sediment of the wetland where the difference between the results was significant. Microplastic ecological risk assessment showed high potential ecological risk. The findings underscore the importance of effective management strategies and the implementation of policies to mitigate the negative impact of MP pollution on ecosystems and human health.
Keywords: Ecological risk; Microplastics fate; Raman spectroscopy; Sediment; Water; Wetland.
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.