Efficient nitrogen removal via simultaneous ammonium assimilation and heterotrophic denitrification of Paracoccus denitrificans R-1

iScience. 2024 Jul 30;27(9):110599. doi: 10.1016/j.isci.2024.110599. eCollection 2024 Sep 20.

Abstract

Although diverse microorganisms can remove ammonium and nitrate simultaneously, their metabolic mechanisms are not well understood. Paracoccus denitrificans R-1 showed the maximal NH4 + removal rate 9.94 mg L-1·h-1 and 2.91 mg L-1·h-1 under aerobic and anaerobic conditions, respectively. Analysis of the nitrogen balance calculation and isotope tracing experiment indicated that NH4 + was consumed through assimilation. The maximal NO3 - removal rate of strain R-1 was 18.05 and 19.76 mg L-1·h-1 under aerobic and anaerobic conditions, respectively. The stoichiometric consumption ratio of acetate to nitrate was 0.902 and NO3 - was reduced to N2 for strain R-1 through 15NO3 - isotopic tracing experiment, which indicated a respiratory process coupled with the oxidation of electron donors. Genomic analysis showed that strain R-1 contained genes for ammonium assimilation and denitrification, which effectively promoted each other. These findings provide insights into microbial nitrogen transformation and facilitate the simultaneous removal of NH4 + and NO3 - in a single reactor.

Keywords: Biogeochemistry; aquatic biology; aquatic science; microbial metabolism; microbiology.