Ability of visible imaging and machine learning in detection of chickpea flour adulterant in original cinnamon and pepper powders

Heliyon. 2024 Aug 8;10(16):e35944. doi: 10.1016/j.heliyon.2024.e35944. eCollection 2024 Aug 30.

Abstract

Adulteration detection in plant-based medicinal powders is necessary to provide high quality products due to the economic and health importance of them. According to advantages of imaging technology as non-destructive tool with low cost and time, the present research aims to evaluate the ability of the visible imaging combined with machine learning for distinguish original products and the adulterated samples with different levels of chickpea flour. The original products were black pepper, red pepper, and cinnamon, the adulterant was chick pea, and the adulteration levels were 0, 5, 15, 30, and 50 %. The results showed that the accuracies of the classifier based on the artificial neural networks method for classification of black pepper, red pepper, and cinnamon were 97.8, 98.9, and 95.6 %, respectively. The results for support vector machine with one-to-one strategy were 93.33, 97.78 and 92.22 %, respectively. Visible imaging combined with machine learning are reliable technologies to detect adulteration in plant-based medicinal powders so that can be applied to develop industrial systems and improving performance and reducing operation costs.

Keywords: Adulteration; Artificial neural networks; Image processing; Support vector machine.