Memory loss is becoming an increasingly significant health problem, largely due to Alzheimer's disease (AD), which disrupts the brain in several ways, including causing inflammation and weakening the body's defenses. This study explores the potential of medicinal plants as a source of novel therapeutic agents for AD. First, we tested various plant extracts against acetylcholinesterase (AChE) in vitro, following molecular docking simulations with key AD-related protein targets such as MAO-B, P-gp, GSK-3β, and CD14. Rosemary extract was found to be the most inhibitory towards AChE. The compounds found in rosemary (oleanolic acid), sage (pinocembrin), and cinnamon (italicene) showed promise in potentially binding to MAO-B. These chemicals may interact with a key protein in the brain and alter the production and removal of amyloid-β. Luteolin (from rosemary), myricetin (from sage), chamigrene, and italicene (from cinnamon) exhibited potential for inhibiting tau aggregation. Additionally, ursolic acid found in rosemary, sage, and chamigrene from cinnamon could modulate CD14 activity. For the first time, our findings shed light on the intricate interplay between neuroinflammation, neuroprotective mechanisms, and the immune system's role in AD. Further research is needed to validate the in vivo efficacy and safety of these plant-derived compounds, as well as their interactions with key protein targets, which could lead to the development of novel AD therapeutics.
Keywords: AChE inhibition; Human and diseases; Immunomodulation; Medicinal plants; Mental disorder; Neuroinflammation; Neuroprotective; Protein docking.
© 2024 The Author(s).