Self-Standing Covalent Organic Polymer Membrane with High Stability and Enhanced Ion-Sieving Effect for Flow Battery

Angew Chem Int Ed Engl. 2024 Sep 4:e202413046. doi: 10.1002/anie.202413046. Online ahead of print.

Abstract

Fabrication of ion-conducting membranes with continuous sub-nanometer channels holds fundamental importance for flow batteries in achieving safe integration of renewable energy into grids. Self-standing covalent organic polymer (COP) membranes provide feasibility due to their rapid and selective ion transport. However, the development of a scale-up possible, mechanically robust and chemically stable membranes remains a significant challenge. Herein, using irreversible strong secondary amine linkage, we propose a self-standing COP membrane with sub-nanometer pores ranging from 4.5 to 6.4 Å, by a simple and efficient in situ polymerization approach. This membrane exhibits enhanced selectivity for proton and vanadium ions, especially excellent electrochemical stability, delivering an energy efficiency of over 80 % at the current density of 200 mA cm-2 over 1000 cycles for an all-vanadium redox flow battery (VFB). This study provides novel insights for COP-based ion-sieving membranes in sustainable energy fields.

Keywords: Covalent organic polymer; Flow battery; Self-standing membrane.