Oxidative damage contributes to age-related macular degeneration. Irigenin possesses diverse pharmacologic properties, including antioxidative and antiapoptotic effects. Our in vivo experiments indicated that irigenin mitigates UVB-induced histopathologic changes and oxidative DNA damage. Histologic analyses and TUNEL staining revealed that this compound dose-dependently ameliorated UVB-induced retinal damage and apoptosis. Furthermore, irigenin substantially reduced the level of 8-hydroxyguanosine, a biomarker of UVB-induced oxidative DNA damage. We further explored the molecular mechanisms that mediate the protective effects of irigenin. Our findings suggested that UVB-induced generation of ROS disrupts the stability of the mitochondrial membrane, activating intrinsic apoptotic pathways; the underlying mechanisms include the release of cytochrome c, activation of caspase-9 and caspase-3, and subsequent degradation of PARP-1. Notably, irigenin reversed mitochondrial disruption and apoptosis. It also modulated the Bax and Bcl-2 expression but influenced the mitochondrial apoptotic pathways. Our study highlights the role of the Nrf2 pathway in mitigating the effects of oxidative stress. We found that UVB exposure downregulated, but irigenin treatment upregulated the expression of Nrf2 and antioxidant enzymes. Therefore, irigenin activates the Nrf2 pathway to address oxidative stress. In conclusion, irigenin exhibits protective effects against UVB-induced ocular damage, evidenced by the diminution of histological alterations. It mitigates oxidative DNA damage and apoptosis in the retinal tissues by modulating the intrinsic apoptotic pathways and the AIF mechanisms. Furthermore, irigenin effectively reduces lipid peroxidation, enhancing the activity of antioxidant enzymes by stimulating the Nrf2 pathway. This protective mechanism underscores the potential benefit of irigenin in combating UVB-mediated ocular damage.
Keywords: Antioxidant therapy; Apoptotic pathways; Irigenin; Nrf2 pathway; Oxidative stress; UVB-induced ocular damage.
Copyright © 2024 The Authors. Published by Elsevier Masson SAS.. All rights reserved.