Approximately 1.8 million metric tonnes of honey are produced globally every year. The key source behind this output, the honey bee (Apis mellifera), works tirelessly to create the delicious condiment that is consumed worldwide. The honey that finds its way into jars on store shelves contains a myriad of information about its biogeographical origins, such as the bees that produced it, the botanical constituents, and traces of other organisms or pathogens that have come in contact with the product or its producer. With the ongoing threat of honey bee decline and overall global biodiversity loss, access to ecological information has become an key factor in preventing the loss of species. This review delves into the various molecular techniques developed to characterize the collective DNA harnessed within honey samples, and how it can be used to elucidate the ecological interactions between honey bees and the environment. We also explore how these DNA-based methods can be used for large-scale biogeographical studies through the environmental DNA collected by foraging honey bees. Further development of these techniques can assist in the conservation of biodiversity by detecting ecosystem perturbations, with the potential to be expanded towards other critical flying pollinators.
© 2024. The Author(s).