Amid ongoing global warming, intense dust storms continue to plague regions despite efforts to understand and mitigate their impacts. This study explores the connection between surface temperature (ST) and precipitation (PRE) in the Gobi Desert (GD) during February and their subsequent effects on March dust concentrations across northern East Asia. Our analysis reveals a clear pattern: higher February ST combined with lower PRE in GD correlates with increased dust levels in March, with ST effects predominantly in northern areas of dust sources compared to PRE. The warming of the ST in February facilitates surface thawing, and the concurrently reduced PRE decreases soil moisture in GD. These conditions both contribute to the loosening of the soil, thereby creating favorable lower boundary conditions for the onset of dust activities in the subsequent March. Atmospheric dynamics play a pivotal role in the changes of ST and PRE. The preceding ST warming is closely tied to the weakening of the East Asian winter monsoon. Furthermore, the Eurasia teleconnection (EU) pattern is identified as a key circulation factor driving the changes of February PRE in GD. Additionally, sea surface temperature anomalies in the Barents Sea and the North Atlantic appear to influence these atmospheric circulation changes, altering ST and PRE in GD, and consequently, impacting March dust dynamics in northern East Asia. This study provides crucial insights into the climatic precursors that drive dust storm activities, which are essential for improving the accuracy of dust storm forecasting.
Keywords: Atmospheric teleconnection; Dust activities; Precipitation; Prediction factors; Sea surface temperature; Surface air temperature.
Copyright © 2024 Elsevier B.V. All rights reserved.