Melatonin mitigates matrix stiffness-induced intervertebral disk degeneration by inhibiting reactive oxygen species and melatonin receptors mediated PI3K/AKT/NF-κB pathway

Am J Physiol Cell Physiol. 2024 Nov 1;327(5):C1236-C1248. doi: 10.1152/ajpcell.00630.2023. Epub 2024 Sep 9.

Abstract

Intervertebral disk degeneration (IVDD) may lead to an increase in extracellular matrix (ECM) stiffness, potentially contributing to the progression of the disease. Melatonin reportedly mitigates IVDD; however, its potential to attenuate elevated matrix stiffness-induced IVDD remains unexplored. Therefore, we aimed to investigate whether melatonin can alleviate the progression of IVDD triggered by increased matrix stiffness and elucidate its underlying mechanisms. Nucleus pulposus (NP) tissues were collected from patients, and ECM stiffness, reactive oxygen species (ROS) levels, apoptosis rates, and P65 expression in these tissues with varying Pfirrmann scores were determined. In vitro experiments were conducted to investigate the effects of melatonin on various pathophysiological mechanisms within the NP cells cultured on soft substrates with differing stiffness levels. Our findings revealed a positive correlation between ECM stiffness in human NP tissue and degree of IVDD. In addition, phosphorylation of P65 exhibited a strong association with matrix stiffness. Enhanced levels of ROS and cellular apoptosis were observed within degenerated intervertebral disks. In vitro experiments demonstrated that melatonin significantly inhibited catabolism and apoptosis induced by stiff matrices, along with elevated ROS levels. Furthermore, we observed that melatonin inhibited NP cell catabolism and apoptosis by reducing the melatonin receptors mediated activation of the PI3K/AKT and nuclear factor-kappa B (NF-κB) pathways. Also, we found that the reduction of ROS by melatonin can assist in inhibiting the activation of the NF-κB pathway. The outcomes of the in vivo experiments corroborated the results of the in vitro experiments, illustrating that melatonin treatment could alleviate the compression-induced upregulation of matrix stiffness in NP and IVDD. Collectively, melatonin can potentially alleviate high matrix stiffness-induced IVDD by reducing intracellular ROS levels and inhibiting the PI3K/AKT/NF-κB pathway.NEW & NOTEWORTHY Melatonin mitigates intervertebral disk degeneration (IVDD) induced by matrix stiffness through reactive oxygen species (ROS) reduction. Matrix stiffness is related to increased nucleus pulposus cell ROS, apoptosis, and degeneration. Melatonin inhibits PI3K/AKT/NF-κB pathways via melatonin receptors in a stiff matrix environment. In vivo, melatonin restores disk height and alleviates IVDD progression.

Keywords: extracellular matrix; intervertebral disk degeneration; melatonin; reactive oxygen species.

MeSH terms

  • Adult
  • Animals
  • Apoptosis / drug effects
  • Cells, Cultured
  • Extracellular Matrix / drug effects
  • Extracellular Matrix / metabolism
  • Extracellular Matrix / pathology
  • Female
  • Humans
  • Intervertebral Disc Degeneration* / drug therapy
  • Intervertebral Disc Degeneration* / metabolism
  • Intervertebral Disc Degeneration* / pathology
  • Male
  • Melatonin* / pharmacology
  • Middle Aged
  • NF-kappa B / metabolism
  • Nucleus Pulposus* / drug effects
  • Nucleus Pulposus* / metabolism
  • Nucleus Pulposus* / pathology
  • Phosphatidylinositol 3-Kinase / metabolism
  • Phosphatidylinositol 3-Kinases / metabolism
  • Proto-Oncogene Proteins c-akt / metabolism
  • Reactive Oxygen Species / metabolism
  • Receptors, Melatonin* / metabolism
  • Signal Transduction* / drug effects

Substances

  • Melatonin
  • NF-kappa B
  • Phosphatidylinositol 3-Kinase
  • Phosphatidylinositol 3-Kinases
  • Proto-Oncogene Proteins c-akt
  • Reactive Oxygen Species
  • Receptors, Melatonin