This study examined whether target pursuit tracking by a performer-controlled computer cursor around a square diamond-shaped circuit, using isometric pinch grip force production, would show a significant difference in performance metrics dependent on the clockwise sense of the target movement along the trajectory path. The target template incorporated path segments requiring all four possible combinations of directional force modulation patterns (increasing and decreasing isometric pinch forces of the thumb and index finger). Overall, it was found that cursor positional accuracy was greater during counterclockwise pursuit, that steadiness was greater during clockwise pursuit, and that the cursor bearing angle with respect to target movement was biased toward cursor positioning being within the interior of the trajectory circuit regardless of clockwise sense.
Keywords: fine motor control; isometric force modulation; pursuit tracking.