Photoactivated Reactions without Traditional Photocatalysts: Electron-Donor Complexation of 1,2,3-Triazoles Initiates Denitrogenative Transformations

J Org Chem. 2024 Sep 20;89(18):13243-13252. doi: 10.1021/acs.joc.4c01371. Epub 2024 Sep 10.

Abstract

We present a set of visible-light-promoted denitrogenative transformations of 1,2,3-triazoles that generate high product yields without the use of a traditional, external photocatalyst, with the reaction viable for both benzotriazole and benzotriazinone. Mechanistic studies using UV-vis absorption, 1H NMR spectroscopy, and density functional theory indicate that these reactions are initiated by an electron donor-acceptor (EDA) complex which forms between N,N-diisopropylethylamine (DIPEA) and the 1,2,3-triazole. A comprehensive analysis of how irradiation wavelength impacts reactivity was obtained using an online photochemical reactor coupled mass spectrometer, indicating a lack of correlation between absorptivity and photoreactivity for the reaction between benzotriazinone and methyl acrylate. The reaction was photoinitiated by light-emitting diodes (LEDs) at wavelengths longer than 400 nm, which is unexpected on the basis of solely the absorption spectra of the starting materials.