Introduction: In adult patients with ureteropelvic junction obstruction (UPJO), little data exist on predicting pyeloplasty outcome, and there is no unified definition of pyeloplasty success. As such, defining pyeloplasty success retrospectively is particularly vulnerable to bias, allowing researchers to choose significant outcomes with the benefit of hindsight. To mitigate these biases, we performed an unsupervised machine learning cluster analysis on a dataset of 216 pyeloplasty patients between 2015 and 2023 from a multihospital system to identify the defining risk factors of patients that experience worse outcomes. Methods: A KPrototypes model was fitted with pre- and perioperative data and blinded to postoperative outcomes. T-test and chi-square tests were performed to look at significant differences of characteristics between clusters. SHapley Additive exPlanation values were calculated from a random forest classifier to determine the most predictive features of cluster membership. A logistic regression model identified which of the most predictive variables remained significant after adjusting for confounding effects. Results: Two distinct clusters were identified. One cluster (denoted as "high-risk") contained 111 (51.4%) patients and was identified by having more comorbidities, such as old age (62.7 vs 35.7), high body mass index (BMI) (26.9 vs 23.8), hypertension (66.7% vs 17.1%), and previous abdominal surgery (72.1% vs 37.1%) and was found to have worse outcomes, such as more frequent severe postoperative complications (7.2% vs 1.0%). After adjusting for confounding effects, the most predictive features of high-risk cluster membership were old age, low preoperative estimated glomerular filtration rate (eGFR), hypertension, greater BMI, previous abdominal surgery, and left-sided UPJO. Conclusions: Adult UPJO patients with older age, lower eGFR, hypertension, greater BMI, previous abdominal surgery, and left-sided UPJO naturally cluster into to a group that more commonly suffers from perioperative complications and worse outcomes. Preoperative counseling and perioperative management for patients with these risk factors may need to be thought of or approached differently.
Keywords: outcomes; pyeloplasty; risk factors; unsupervised machine learning; ureteropelvic junction obstruction.