Background: We investigated the long-term colour and contrast vision outcomes, 15 years after a first demyelinating event, with their structural correlates using optical coherence tomography (OCT) and brain MRI.
Methods: Patients recruited with their first demyelinating event, were invited~15 years later to undergo clinical assessments, OCT and brain MRI and were clinically classified according to multiple sclerosis (MS) phenotypes. Linear mixed models evaluated associations between visual outcomes, MS phenotypes and OCT measures.
Results: 94 patients were evaluated after a median of 14.3 years. 111 eyes affected by optic neuritis and 77 unaffected eyes were studied. Optic neuritis eyes displayed worse colour vision than unaffected eyes. Unaffected eyes showed worse colour vision in relapsing-remitting MS and secondary progressive MS (SPMS) than clinically isolated syndrome, while no similar discriminatory ability was seen for OCT measures. However, ganglion cell inner plexiform layer (GCIPL) was superior to peripapillary retinal nerve fibre layer (pRNFL) in predicting all visual outcomes. Worse colour vision was associated with lower retinal thicknesses and higher brain T2 lesion load; adding MRI volumetrics to macular GCIPL predictors did not improve model prediction of visual outcomes.
Conclusions: Colour vision was impaired in unaffected eyes, especially in SPMS. GCIPL thinning underpinned this impairment more than pRNFL, suggesting neuroaxonal loss as the pathobiological substrate. The correlation between worse colour vision and increasing T2 lesion load suggests that colour dysfunction reflects overall greater disease burden. Quantitative evaluation of colour vision in addition to OCT may be useful to assess disease severity in patients after a first demyelinating event.
Keywords: MULTIPLE SCLEROSIS; NEUROOPHTHALMOLOGY; VISION.
© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY. Published by BMJ.