Purpose: This study assesses the diagnostic efficacy of offline Medios Artificial Intelligence (AI) glaucoma software in a primary eye care setting, using nonmydriatic fundus images from Remidio's Fundus-on-Phone (FOP NM-10). Artificial intelligence results were compared with tele-ophthalmologists' diagnoses and with a glaucoma specialist's assessment for those participants referred to a tertiary eye care hospital.
Design: Prospective cross-sectional study PARTICIPANTS: Three hundred three participants from 6 satellite vision centers of a tertiary eye hospital.
Methods: At the vision center, participants underwent comprehensive eye evaluations, including clinical history, visual acuity measurement, slit lamp examination, intraocular pressure measurement, and fundus photography using the FOP NM-10 camera. Medios AI-Glaucoma software analyzed 42-degree disc-centric fundus images, categorizing them as normal, glaucoma, or suspect. Tele-ophthalmologists who were glaucoma fellows with a minimum of 3 years of ophthalmology and 1 year of glaucoma fellowship training, masked to artificial intelligence (AI) results, remotely diagnosed subjects based on the history and disc appearance. All participants labeled as disc suspects or glaucoma by AI or tele-ophthalmologists underwent further comprehensive glaucoma evaluation at the base hospital, including clinical examination, Humphrey visual field analysis, and OCT. Artificial intelligence and tele-ophthalmologist diagnoses were then compared with a glaucoma specialist's diagnosis.
Main outcome measures: Sensitivity and specificity of Medios AI.
Results: Out of 303 participants, 299 with at least one eye of sufficient image quality were included in the study. The remaining 4 participants did not have sufficient image quality in both eyes. Medios AI identified 39 participants (13%) with referable glaucoma. The AI exhibited a sensitivity of 0.91 (95% confidence interval [CI]: 0.71-0.99) and specificity of 0.93 (95% CI: 0.89-0.96) in detecting referable glaucoma (definite perimetric glaucoma) when compared to tele-ophthalmologist. The agreement between AI and the glaucoma specialist was 80.3%, surpassing the 55.3% agreement between the tele-ophthalmologist and the glaucoma specialist amongst those participants who were referred to the base hospital. Both AI and the tele-ophthalmologist relied on fundus photos for diagnoses, whereas the glaucoma specialist's assessments at the base hospital were aided by additional tools such as Humphrey visual field analysis and OCT. Furthermore, AI had fewer false positive referrals (2 out of 10) compared to the tele-ophthalmologist (9 out of 10).
Conclusions: Medios offline AI exhibited promising sensitivity and specificity in detecting referable glaucoma from remote vision centers in southern India when compared with teleophthalmologists. It also demonstrated better agreement with glaucoma specialist's diagnosis for referable glaucoma participants.
Financial disclosure(s): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Keywords: AI; Glaucoma; Screening; Tele-ophthalmology; Vision centers.
Copyright © 2024 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.